4x^2+16x-132=0

Simple and best practice solution for 4x^2+16x-132=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^2+16x-132=0 equation:



4x^2+16x-132=0
a = 4; b = 16; c = -132;
Δ = b2-4ac
Δ = 162-4·4·(-132)
Δ = 2368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2368}=\sqrt{64*37}=\sqrt{64}*\sqrt{37}=8\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{37}}{2*4}=\frac{-16-8\sqrt{37}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{37}}{2*4}=\frac{-16+8\sqrt{37}}{8} $

See similar equations:

| x/9-10=35 | | 3(x+7)=7x+8-4x+13 | | 2s+4=-20-10 | | 15(3x+2)=7(2x+2) | | 3(x+5)=7x+8-4x+7 | | 2y^2+8y=-5 | | 1.06*(1-x)=1.03 | | (x+3)/5=5 | | 7+4i/6+4i=7/6 | | 4-6x=10-x | | 2(6x+10)=44 | | 2(6x+10)=4 | | 4x+27/2=(x-1)/3 | | 6x-7=2x+33 | | 9b=7b/3b | | 5/8=b/60 | | 3x^+3x-10=0 | | 5-11/2+7*8=x | | 6x+23=59 | | x^2-14+5x=100 | | 1/3y-1=1/10y | | x^2-14+5x=70 | | -7/6w=-49 | | 3x+5x-10=2-5+3 | | 3(7x-9)=15 | | x^2-14+5x=36 | | 6(2x+1)=66 | | (2x-11)^2=1 | | 5(3n+3)=9(8n+8)+3 | | 2-w=1 | | 4(3n+4)=9(6n+9)+2 | | 8-x/2=46 |

Equations solver categories